

"The Core Rule Set":
Generic detection of application layer
attacks

Ofer Shezaf
ModSecurity Core Rule Set Project Leader
CTO, Breach Security

Web Application Firewalls
vs.

Intrusion Prevention Systems

Multiple Deployment Modes

`

Web
Server

Firewall

`

Web
Server

Firewall

In-Line mode

Embedded mode

`

Web
Server

Firewall

Out of line mode

Three Protection Strategies for WAFs

1. External patching
 Also known as "just-in-time patching" or "virtual patching".

2. Positive security model
 An independent input validation envelope.
 Rules must be adjusted to the application.
 Automated and continuous learning (to adjust for changes) is the key.

3. Negative security model
 Looking for bad stuff,
 Mostly signatures based.
 Generic but requires some tweaking for each application.

IPS?

Virtual Patching

 Testing reveals that the login field is vulnerable to SQL
injection.

 Login names cannot include characters beside
alphanumerical characters.

 The following rule will help:

<LocationMatch "^/app/login.asp$">
SecRule ARGS:username "!^\w+$" "deny,log"

>/LocationMatch>

Positive security

 Very hard to create, requires learning by:
 Monitoring outbound traffic (match input to web server request)

► Caveats: JavaScript, Web Services
 Monitoring inbound traffic (normal behavior):

► Caveats: Statistics, attacks in learning period.

<LocationMatch "^/exchweb/bin/auth/owaauth.dll$">
 SecDefaultAction "log,deny,t:lowercase"
 SecRule REQUEST_METHOD !POST
 SecRule ARGS:destination " URL" "t:urlDecode"
 SecRule ARGS:flags "[0-9]{1,2}"
 SecRule ARGS:username "[0-9a-zA-Z].{256,}"
 SecRule ARGS:password ".{256,}"
 SecRule ARGS:SubmitCreds "!Log.On"
 SecRule ARGS:trusted "!(0|4)"
</LocationMatch>

 The same, but for every field in every application

Site

Positive Security

Site Map

Site Status

URLs

Parameters

Parameter
Types

Negative Security

An IPS, but:
 Deep understanding of HTTP and HTML

 Breaking up to individual fields: headers, parameters, uploaded files.
 Validation of field attributes such as content, length or count
 Correct breakup and matching of transactions and sessions.
 Compensation for protocol caveats and anomalies, for example cookies.

 Robust parsing:
 Unique parameters syntax
 XML requests (SOAP, Web Services)

 Anti Evasion features:
 Decoding
 Path canonizations
 Thorough understanding of application layer issues: Apache request line

delimiters, PHP parameter names anomalies.
 Rules instead of signatures:

 Sessions & state management, Logical operators, Control structures.

The Core Rule Set

Detection of generic app layer attacks

 Core Rule Set available for ModSecurity at:
 http://www.modsecurity.org/projects/rules/index.html
 Probably translatable to any App Firewall

 Benefits from ModSecurity features:
 Anti Evasion
 Granular Parsing

 Detection Mechanisms:
 Protocol Validation
 Generic Attack Signatures
 Known Vulnerabilities Signatures
 More…

http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html
http://www.modsecurity.org/projects/rules/index.html

Protocol Validation

Protocol Violations

 Protocol vulnerabilities such as Response Splitting,
Request Smuggling, Premature URL ending:
 Content length only for none GET/HEAD methods
 Non ASCII characters or encoding in headers.
 Valid use of headers (for example, content length is numerical)
 Proxy Access

 Attack requests are different due to automation:
 Missing headers such as Host, Accept, User-Agent.
 Host is an IP address.

Protocol Policy

 Policy is usually application specific:
 Some restrictions can usually be applied generically.
 White lists can be build for specific environments.

 Items that can be allowed or restricted:
 Methods - Allow or restrict WebDAV, block abused methods

such as CONNECT, TRACE or DEBUG.
 File extensions – backup files, database files, ini files.
 Content-Types (and to some extent other headers)

 Limitations on sizes:
 Request size, Upload size,
 # of parameters, length of parameter.

Application Layer Signatures

IDS/IPS signatures

 Simple text strings or regular expression patterns
matched against input data.

 Usually detect attack vectors:
 Used for known vulnerabilities, while web applications are

usually custom made.
 Variations on attack vectors are very easy to create

Snort signature
for Bugtraq vulnerability #21799

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(
msg:"BLEEDING-EDGE WEB Cacti cmd.php Remote Arbitrary
SQL Command Execution Attempt";
flow:to_server,established;
uricontent:"/cmd.php?"; nocase;
uricontent:"UNION"; nocase;
uricontent:"SELECT"; nocase;
reference:cve,CVE-2006-6799; reference:bugtraq,21799;
classtype: web-application-attack; sid:2003334; rev:1;

)

Does the
application
accepts POST
requests?

UNION and
SELECT are
common English
words. So is
SELECTION

An SQL injection
does not have to use
SELECT or UNION

/cacti/cmd.php?1+1111)/**/UNION/**/SELECT/**/2,0,1,1,12
7.0.0.1,null,1,null,null,161,500, proc,null,1,300,0, ls
-la >
./rra/suntzu.log,null,null/**/FROM/**/host/*+11111

Snort Signature:

Exploit:

Signature built for
specific exploit

Case study: 1=1

 Classic example of an SQL injection attacks. Often used
as a signature.

 But, can be avoided easily using:
 Encoding: 1%3D1
 White Space: 1 =%091
 Comments 1 /* This is a comment */ = 1

 Actually not required at all by attacker.
 Any true expression would work: 2 > 1
 In some cases, a constant would also work. In MS-Access all the

following are true: 1, “1”, “a89”, 4-4.

 No simple generic detection

WAF Rules

 Multiple operators and logical expressions:
 Is password field length > 8?

 Selectable anti-evasion transformation functions:
 Path normalization can be used also in parameters.
 Base64 decode for basic authentication header.

 Control structures:
 If content is XML or parameters names are not standard,

perform a different set of rules.
 Variables, Session & state management:

 Aggregate events over a sessions.
 Detect brute force & denial of service.
 Audit user name for each transaction

Generic application layer signatures

 Detect attack indicators and not attack vectors:
 xp_cmdshell,
 “<“, single quote - Single quote is very much needed to type

O'Brien
 select, union – which are English words

 Aggregate indicators to determine an attack:
 Very strong indicators: xp_cmdshell, varchar,
 Sequence: union …. select, select … top … 1
 Amount: script, cookie and document appear in the same input

field.
 Sequence over multiple requests from the same source.

Back to Bugtraq vulnerability #21799
The Core Rule Set Generic Detection

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|
REQUEST_HEADERS|!REQUEST_HEADERS:Referer \

"(?:\b(?:(?:s(?:elect\b(?:.{1,100}?\b(?:(?:length|count|
top)\b.{1,100}?\bfrom|from\b.{1,100}?\bwhere)|.
?\b(?:d(?:ump\b.\bfrom|ata_type)|(?:to_(?:numbe|cha)|inst)r))|
p_(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute(?:sql)?|
makewebtask)|ql_(?:… … … \

“capture,log,deny,t:replaceComments, t:urlDecodeUni,
t:htmlEntityDecode, t:lowercase,msg:'SQL Injection Attack. Matched
signature <%{TX.0}>',id:'950001',severity:'2'“

Supports any type
of parameters,
POST , GET or any
other

Common evasion
techniques are
mitigated

Every SQL injection
related keyword is
checked

SQL comments are
compensated for

Back to Bugtraq vulnerability #21799
Virtual Patching

Simpler, isn’t it?

<LocationMatch :"/cmd.php$">
SecRule QUERY_STRING "^[\d\s]*$” “deny,log"

>/LocationMatch>

SecRule REQUEST_FILENAME :"/cmd.php$" “deny,log"

Or

Parameters Must
Be Numeric

Actually script
should not be

Odds and Ends

Malicious Robots

 Detection of malicious robots:
 Unique request attributes: User-Agent header, URL, Headers
 Black list of IP addresses

 Not aimed against targeted attacks, but against general malicious
internet activity:
 Offloads a lot of cyberspace junk & noise
 Effective against comment spam.
 Reduce event count.

 In addition:
 Detection of security scanners
 Detection of non malicious robots (such as search engines).
 Confusing security testing software (HTTPrint)

Trojans and Viruses

 Major problem at hosting environments
 Uploading is allowed.
 Some sites may be secure while others not.

 Generic detection:
 Check upload of Viruses.
 Check upload of Trojans – AV software is not very good at that.
 Check for access to Trojans:

► Known signatures (x_key header)
► Generic file management output (gid, uid, drwx, c:\)

Error conditions

 Last line of defense if all else fails
 Provide feedback to application developers
 Important for customer experience
 Makes life for the hacker harder

Future Plans

 Session bases protection:
 Brute force detection.
 Scanner and automation detection based on rate and result

code.
 Anomaly scoring.

 XML protection:
 Schema validation for known XML payloads, such as SOAP.
 Context based signature check in XML using XPath.

Thank You!

Ofer Shezaf
ofers@breach.com

